Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 21(1): 16, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509617

RESUMO

BACKGROUND: Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS: In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1ß release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1ß release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS: Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.


Assuntos
Catepsina B , Lipopolissacarídeos , Masculino , Humanos , Camundongos , Animais , Catepsina B/metabolismo , Catepsina B/farmacologia , Lipopolissacarídeos/farmacologia , Ensaios de Triagem em Larga Escala , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos , Citocinas/metabolismo , Interleucina-1beta/metabolismo
2.
J Biomed Sci ; 30(1): 91, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936170

RESUMO

BACKGROUND: Although stimulating autophagy caused by UV has been widely demonstrated in skin cells to exert cell protection, it remains unknown the cellular events in UVA-treated retinal pigment epithelial (RPE) cells. METHODS: Human ARPE-19 cells were used to measure cell viability, mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial mass and lysosomal mass by flow cytometry. Mitochondrial oxygen consumption rate (OCR) was recorded using Seahorse XF flux analyzer. Confocal microscopic images were performed to indicate the mitochondrial dynamics, LC3 level, and AMPK translocation after UVA irradiation. RESULTS: We confirmed mitochondrial ROS production and DNA damage are two major features caused by UVA. We found the cell death is prevented by autophagy inhibitor 3-methyladenine and gene silencing of ATG5, and UVA induces ROS-dependent LC3II expression, LC3 punctate and TFEB expression, suggesting the autophagic death in the UVA-stressed RPE cells. Although PARP-1 inhibitor olaparib increases DNA damage, ROS production, and cell death, it also blocks AMPK activation caused by UVA. Interestingly we found a dramatic nuclear export of AMPK upon UVA irradiation which is blocked by N-acetylcysteine and olaparib. In addition, UVA exposure gradually decreases lysosomal mass and inhibits cathepsin B activity at late phase due to lysosomal dysfunction. Nevertheless, cathepsin B inhibitor, CA-074Me, reverses the death extent, suggesting the contribution of cathepsin B in the death pathway. When examining the role of EGFR in cellular events caused by UVA, we found that UVA can rapidly transactivate EGFR, and treatment with EGFR TKIs (gefitinib and afatinib) enhances the cell death accompanied by the increased LC3II formation, ROS production, loss of MMP and mass of mitochondria and lysosomes. Although AMPK activation by ROS-PARP-1 mediates autophagic cell death, we surprisingly found that pretreatment of cells with AMPK activators (A769662 and metformin) reverses cell death. Concomitantly, both agents block UVA-induced mitochondrial ROS production, autophagic flux, and mitochondrial fission without changing the inhibition of cathepsin B. CONCLUSION: UVA exposure rapidly induces ROS-PARP-1-AMPK-autophagic flux and late lysosomal dysfunction. Pre-inducing AMPK activation can prevent cellular events caused by UVA and provide a new protective strategy in photo-oxidative stress and photo-retinopathy.


Assuntos
Morte Celular Autofágica , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Catepsina B/metabolismo , Catepsina B/farmacologia , Células Epiteliais/metabolismo , Receptores ErbB , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Am J Pathol ; 193(12): 2047-2065, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741453

RESUMO

Toxoplasma gondii infection in pregnant women may cause fetal anomalies; however, the underlying mechanisms remain unclear. The current study investigated whether T. gondii induces pyroptosis in human placental cells and the underlying mechanisms. Human placental trophoblast (BeWo and HTR-8/SVneo) and amniotic (WISH) cells were infected with T. gondii, and then reactive oxygen species (ROS) production, cathepsin B (CatB) release, inflammasome activation, and pyroptosis induction were evaluated. The molecular mechanisms of these effects were investigated by treating the cells with ROS scavengers, a CatB inhibitor, or inflammasome-specific siRNA. T. gondii infection induced ROS generation and CatB release into the cytosol in placental cells but decreased mitochondrial membrane potential. T. gondii-infected human placental cells and villi exhibited NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation and subsequent pyroptosis induction, as evidenced by increased expression of ASC, cleaved caspase-1, and mature IL-1ß and gasdermin D cleavage. In addition to inflammasome activation and pyroptosis induction, adverse pregnancy outcome was shown in a T. gondii-infected pregnant mouse model. Administration of ROS scavengers, CatB inhibitor, or inflammasome-specific siRNA into T. gondii-infected cells reversed these effects. Collectively, these findings show that T. gondii induces NLRP1/NLRP3/NLRC4/AIM2 inflammasome-dependent caspase-1-mediated pyroptosis via induction of ROS production and CatB activation in placental cells. This mechanism may play an important role in inducing cell injury in congenital toxoplasmosis.


Assuntos
Inflamassomos , Toxoplasma , Camundongos , Animais , Humanos , Feminino , Gravidez , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Trofoblastos/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Placenta/metabolismo , RNA Interferente Pequeno , Caspases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas NLR/metabolismo
4.
J Neuroimmunol ; 382: 578101, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536050

RESUMO

Ginkgo biloba extract (EGb-761) is well-recognized to have neuroprotective properties. Meanwhile, autophagy machinery is extensively involved in the pathophysiological processes of ischemic stroke. The EGb-761 is widely used in the clinical treatment of stroke patients. However, its neuroprotective mechanisms against ischemic stroke are still not fully understood. The present study was conducted to uncover whether the pharmacological effects of EGb-761 can be executed by modulation of the autophagic/lysosomal signaling axis. A Sprague-Dawley rat model of ischemic stroke was established by middle cerebral artery occlusion (MCAO) for 90 min, followed by reperfusion. The EGb-761 was then administered to the MCAO rats once daily for a total of 7 days. Thereafter, the penumbral tissues were acquired to detect proteins involved in the autophagic/lysosomal pathway including Beclin1, LC-3, SQSTM1/p62, ubiquitin, cathepsin B, and cathepsin D by western blot and immunofluorescence, respectively. Subsequently, the therapeutic outcomes were evaluated by measuring the infarct volume, neurological deficits, and neuron survival. The results showed that the autophagic activities of Beclin1 and LC3-II in neurons were markedly promoted by 7 days of EGb-761 therapy. Meanwhile, the autophagic cargoes of insoluble p62 and ubiquitinated proteins were effectively degraded by EGb-761-augmented lysosomal activity of cathepsin B and cathepsin D. Moreover, the infarction size, neurological deficiencies, and neuron death were also substantially attenuated by EGb-761 therapy. Taken together, our study suggests that EGb-761 exerts a neuroprotective effect against ischemic stroke by promoting autophagic/lysosomal signaling in neurons at the penumbra. Thus, it might be a new therapeutic target for treating ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Animais , Neuroproteção , Catepsina B/metabolismo , Catepsina B/farmacologia , Catepsina D/metabolismo , Catepsina D/farmacologia , Catepsina D/uso terapêutico , Proteína Beclina-1/farmacologia , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais , Autofagia , Lisossomos/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
5.
Front Immunol ; 14: 1207121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457695

RESUMO

Introduction: Hypervirulent Klebsiella pneumoniae (hvKp) has emerged as a clinically significant global pathogen in the last decade. However, the host immune responses of the macrophages during hvKp infection are largely unknown. In the present study, we aimed to compare the cytotoxic effects of hvKp and classical K. pneumoniae (cKp) in murine macrophages. Results: We found that the activation of caspase-1 -dependent pyroptosis was higher in cKp-infected macrophages compared with that in hvKp-infected macrophages. In Caspase-1 deficiency macrophages, pyroptosis diminished during infection. Both hvKp and cKp strains led to nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome formation and lysosomal cathepsin B activation, thus resulting in pyroptosis. Compared with the cKp strain, the hvKp strain inhibited these phenomena in murine macrophages. Conclusion: HvKp infection resulted in different levels of pyroptosis via the activation of cathepsin B-NLRP3-caspase-1 in murine macrophages. Therefore, the manipulation of pyroptotic cell death is a potential target for host response during hvKp infection in macrophages.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Camundongos , Virulência , Piroptose , Catepsina B/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Macrófagos , Caspases
6.
Altern Ther Health Med ; 29(6): 384-392, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37384401

RESUMO

Background: Atherosclerosis is a chronic inflammatory disease. Pyroptosis triggers and amplifies the inflammatory response and plays an important role in atherosclerosis. Cathepsin B (CTSB) can promote atherosclerosis and activate NOD-like receptor protein 3 (NLRP3) to mediate pyroptosis. Dapagliflozin (DAPA) can inhibit cell pyroptosis to improve atherosclerosis. This study aimed to explore the effect of DAPA on oxidized low-density lipoprotein (ox-LDL)-induced pyroptosis of vascular smooth muscle cells (VSMCs) and its underlying mechanism. Objective: We aimed to investigate the effect of DAPA on ox-LDL-induced pyroptosis of VSMCs in mice and its underlying mechanism. Methods: VSMCs were transfected with CTSB-overexpressing and -silencing lentiviral vectors. VSMCs were treated with different concentrations of ox-LDL (0, 50, 100 and 150 µg/ml ). Then, Hoechst 33342/PI double staining, interleukin (IL)-1ß and lactate dehydrogenase (LDH) release assay were used to detect cell pyroptosis. Western blotting was used to detect pyroptosis indicators protein, based on which the appropriate concentration of ox-LDL was selected. After VSMCs were treated with different concentrations of DAPA (0.1 µM, 1.0 µM, 5.0 µM, 10 µM, 25 µM and 50 µM), the proliferative activity of VSMCs was detected using Cell Counting Kit-8 (CCK8) assay. After VSMCs were pretreated with different DAPA concentrations (0.1 µM, 1.0 µM, 5.0 µM and 10 µM) for 24 hours and then treated with 150 µg/mL ox-LDL for 24 hours, the effects of different concentrations of DAPA on pyroptosis of VSMCs were detected, based on which the appropriate DAPA concentration was selected. After lentivirus transfected VSMCs were treated with 150 µg/mL ox-LDL for 24 hours, the effects of overexpression and silencing of CTSB in pyroptosis were observed. On the basis of DAPA (0.1 µM)- and ox-LDL(150 µg/mL)-treated VSMCs, overexpression and silencing of CTSB were used to observe the effects of DAPA and CTSB on ox-LDL-mediated VSMCs pyroptosis. Results: (1) VSMCs stably transfected with CTSB-overexpressing and -silencing lentiviruses were obtained; 150 µg/mL was the optimal concentration of ox-LDL for inducing pyroptosis of VSMCs, and 0.1 µM was the optimal concentration of DAPA for ameliorating pyroptosis of VSMCs. (2) Ox-LDL-induced pyroptosis of VSMCs was worsened by CTSB overexpression but suppressed by CTSB silencing. (3) DAPA attenuated ox-LDL-induced pyroptosis of VSMCs through downregulating CTSB and NLRP3. (4) Overexpression of CTSB based on DAPA intervention aggravated ox-LDL-induced pyroptosis of VSMCs. Conclusion: DAPA attenuates NLRP3/caspase-1 pathway-mediated pyroptosis of VSMCs through downregulating CTSB.


Assuntos
Aterosclerose , Piroptose , Camundongos , Animais , Caspase 1/metabolismo , Caspase 1/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Músculo Liso Vascular/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Transdução de Sinais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo
7.
Antiviral Res ; 216: 105655, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37355023

RESUMO

The severity of the SARS-CoV-2 pandemic and the recurring (re)emergence of viruses prompted the development of new therapeutic approaches that target viral and host factors crucial for viral infection. Among them, host peptidases cathepsins B and L have been described as essential enzymes during SARS-CoV-2 entry. In this study, we evaluated the effect of potent selective cathepsin inhibitors as antiviral agents. We demonstrated that selective cathepsin B inhibitors, such as the antimicrobial agent nitroxoline and its derivatives, impair SARS-CoV-2 infection in vitro. Antiviral activity observed at early stage of virus entry was cell-type dependent and correlated well with the intracellular content and enzymatic function of cathepsins B or L. Furthermore, tested inhibitors were effective against the ancestral SARS-CoV-2 D614 as well as against the more recent BA.1_4 (Omicron). Taken together, our results highlight the important role of host cysteine cathepsin B in SARS-CoV-2 virus entry and show that cathepsin-specific inhibitors, such as nitroxoline and its derivatives, could be used to treat COVID-19. Finally, these results also suggest that nitroxoline has potential to be further explored as repurposed drug in antiviral therapy.


Assuntos
COVID-19 , Humanos , Catepsina B/farmacologia , SARS-CoV-2 , Antivirais/farmacologia , Internalização do Vírus
8.
Sci Total Environ ; 881: 163460, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061049

RESUMO

Humans are often simultaneously exposed to benzo(a)pyrene (BaP) and dibutyl phthalate (DBP) through consumption of food and water. Yet, direct evidence of the link between BaP and DBP co-exposure and the risk of splenic injury is lacking. In the present study, we established the rats and primary splenic macrophages models to evaluate the effects of BaP or/and DBP exposure on spleen and underlying mechanisms. Compared to the single exposure or control groups, the co-exposure group showed more severe spleen damage and higher production of pro-inflammatory cytokines. Co-exposure to BaP and DBP resulted in a 1.79-fold, 2.11-fold and 1.9-fold increase in the M1 macrophage markers iNOS, NLRP3 (pyroptosis marker protein) and cathepsin B (CTSB), respectively, and a 0.8-fold decrease in the M2 macrophage marker Arg1 in vivo. The more prominent effects in perturbation of imbalance in M1/M2 polarization (iNOS, 2.25-fold; Arg1, 0.55-fold), pyroptosis (NLRP3, 1.43-fold), and excess CTSB (1.07-fold) in macrophages caused by BaP and DBP co-exposure in vitro were also found. Notably, MCC950 (the NLRP3-specific inhibitor) treatment attenuated the pro-inflammatory macrophage polarization and following pro-inflammatory cytokine production triggered by BaP and DBP co-exposure. Furthermore, CA-074Me (the CTSB-specific inhibitor) suppressed the macrophages pyroptosis, pro-inflammatory macrophage polarization, and secretion of pro-inflammatory cytokine induced by BaP and DBP co-exposure. In conclusion, this study indicates co-exposure to BaP and DBP poses a higher risk of spleen injury. Pro-inflammatory macrophage polarization regulated by pyroptosis involving CTSB underlies the spleen injury caused by BaP and DBP co-exposure.


Assuntos
Benzo(a)pireno , Baço , Animais , Ratos , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Citocinas/metabolismo , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Baço/metabolismo
9.
J Nutr Biochem ; 116: 109332, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965782

RESUMO

Alcoholic liver disease (ALD), a spectrum of liver abnormalities induced by chronic alcohol abuse, continues to be the major cause of life-threatening liver disease in developed countries. Autophagy and exosomes were individually confirmed to be involved in the pathogenesis of ALD. Here, we sought to identify the role of autophagy and exosomes in the liver protective effects of quercetin. We observed decreased hepatic LC3II/LC3I and increased p62 level in ethanol-fed mice, and these changes were alleviated by quercetin. Meanwhile, nanoparticle tracking analysis (NTA) showed elevated serum exosomes numbers in ethanol-fed mice, which was combated by quercetin. Ethanol induced elevated LDH, ALT, and AST in HepG2 supernatant, which was alleviated by cytochalasin D (exosomes uptake inhibitor). Moreover, quercetin reduced ethanol-induced LDH and ALT elevation in vitro, and the effects of quercetin were reversed by Rab27a overexpression (induce exosomes release) or wortmannin treatment (autophagy inhibitor). Transcriptomic analysis supported that quercetin reversed the change of lysosome related genes disturbed by ethanol. Meanwhile, western blot analysis exhibited decreased hepatic expression of LAMP2 and ATPA6V1B2, and active Cathepsin B/Cathepsin B by quercetin treatment, indicating quercetin alleviated lysosome dysfunction in ethanol-fed mice. Baf A treatment or transfection of siTFEB offset quercetin's effects in ethanol-induced LDH and ALT elevation, exosomes release, and autophagy inhibition (LC3II/I and p62 accumulation). Taken together, quercetin coordinately activates autophagy and combats exosomes release by restoring lysosome function, and further mitigates ethanol-induced liver damage.


Assuntos
Exossomos , Hepatopatias Alcoólicas , Camundongos , Animais , Quercetina/farmacologia , Quercetina/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/toxicidade , Autofagia
10.
Acta Trop ; 239: 106824, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610529

RESUMO

Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.


Assuntos
Acanthamoeba , Amebíase , Amoeba , Naegleria fowleri , Humanos , Catepsina B/farmacologia , Acridinas/farmacologia , Acridinas/uso terapêutico , Simulação de Acoplamento Molecular , Amebíase/tratamento farmacológico , Encéfalo
11.
J Pharm Pharmacol ; 75(1): 49-56, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36173891

RESUMO

OBJECTIVES: Resveratrol (Res) was a naturally occurring polyphenol compound. It has various beneficial effects, including anti-inflammatory, anti-oxidant and anti-cancer effects. However, the anti-cancer activity was hindered by its low targeting and drug release performance. Thus, we synthesized transferrin-cathepsin B cleavable peptide modified mesoporous silica nanoparticle encapsulated Res (Tf-Res-MSN). METHODS: Res was encapsulated in mesoporous silica nanoparticles (MSN), which was a kind of drug carrier complex. Tf was modified to recognize the cancer cells. Cathepsin B cleavable peptide (Pep) was used to combine Res-MSN complex and Tf to construct the final product. Pep was used as linker and trigger for Res release. KEY FINDINGS: The smart nanocarriers were increased the drug release performance of Res in human breast cancer (MCF-7) cells. The physicochemical properties of Tf-Res-MSN were assessed by zeta potential, UV-Prove, diffraction scanning calorimetry (DSC), nitrogen physisorption analysis and transmission electron microscope (TEM). MTT assay, AO and Annexin V-FITC/PI staining were performed to explore the anti-tumour activity of Tf-Res-MSN. The results showed that Tf-Res-MSN significantly decreased cell viability and increased cell apoptosis. The inhibition rate and apoptotic rate of Tf-Res-MSN in MCF-7 cells were 95.75% and 80.8%, respectively. CONCLUSION: Our study demonstrated that Tf-Res-MSN was a valuable technique with potential value in breast cancer applications.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Sistemas de Liberação de Medicamentos/métodos , Células MCF-7 , Resveratrol/farmacologia , Catepsina B/farmacologia , Dióxido de Silício , Transferrina/farmacologia , Transferrina/uso terapêutico , Portadores de Fármacos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Peptídeos/farmacologia , Nanopartículas/química , Apoptose , Porosidade
12.
J Dermatol Sci ; 108(3): 127-137, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36585288

RESUMO

BACKGROUND: Pyroptosis is a newly discovered type of programmed cell death associated with inflammatory and fibrotic diseases. Macrophages play an important role in inducing early immune inflammation in systemic sclerosis (SSc). OBJECTIVE: To investigate the effect of macrophages pyroptosis on fibrosis of SSc. METHODS: Pyroptosis/inflammatory markers in serum and skin of SSc patients were detected. Bleomycin (BLM) was subcutaneously injected to establish SSc mouse model. The levels of pyroptosis markers, dermal thickness and collagen deposition in skin were assessed before and after the administration of pyroptosis inhibitors, including MCC950, Disulfiram and necrosulfonamide (NSA). Human-derived monocyte-macrophage cell line (THP-1) or mouse bone marrow-derived macrophages (BMDMs) were primed with lipopolysaccharide (LPS) and stimulated by silicon dioxide (SiO2) to induce cell pyroptosis. Fibroblasts from patients with SSc were co-cultured with pyroptotic THP-1 cells, and the collagen production was assessed. RESULTS: Pyroptotic/inflammatory proteins, including NLRP3, cleaved-Caspase (CASP)1, GSDMD-N terminal and IL-18 were increased in the serum, and ASC aggregation and GSDMD were elevated in macrophages in the skin of SSc patients. SSc mice showed increased pyroptosis markers, dermal thickness and collagen deposition in skins, which were alleviated by MCC950, Disulfiram and NSA. Pyroptosis of THP-1 cells and BMDMs was induced by LPS/SiO2, and it was reduced by the inhibitors of Cathepsin B, NLRP3, CASP1 and GSDMD. Co-culture with pyroptotic THP-1 cells increased the fibrotic proteins in fibroblasts, which were alleviated by pyroptosis inhibitors. CONCLUSIONS: SSc patients and BLM-induced mouse model presented increased pyroptosis. LPS/SiO2-induced macrophage pyroptosis promoted fibrosis of SSc through Cathepsin B/NLRP3/GSDMD pathway.


Assuntos
Piroptose , Escleroderma Sistêmico , Humanos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Lipopolissacarídeos/farmacologia , Dissulfiram/metabolismo , Dissulfiram/farmacologia , Dióxido de Silício/metabolismo , Dióxido de Silício/farmacologia , Macrófagos , Inflamação/metabolismo , Caspase 1/metabolismo , Modelos Animais de Doenças , Fibrose , Escleroderma Sistêmico/metabolismo , Inflamassomos/metabolismo
13.
Am J Chin Med ; 50(8): 2057-2083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36266752

RESUMO

Apoptosis in the penumbra region is the major cell death mechanism occurring during ischemia-reperfusion injury's early phase. Here, we evaluated how the Alpinia oxyphylla Miq (AOM) affects mitochondria-related apoptosis 3 days after transient middle cerebral artery occlusion (MCAo) and examined the mechanisms underlying the regulation of MAPK-mediated mitochondria-related apoptotic signaling in the peri-infarct cortex in rats. The rats were administered the AOM extract intraperitoneally at doses of 0.2[Formula: see text]g/kg (AOM-0.2[Formula: see text]g), 0.4[Formula: see text]g/kg (AOM-0.4[Formula: see text]g), or 0.8[Formula: see text]g/kg (AOM-0.8[Formula: see text]g) at MCAo initiation. The AOM-0.4[Formula: see text]g and AOM-0.8[Formula: see text]g significantly ameliorated apoptotic cell death and considerably downregulated cytochrome c (cyto c) and cleaved caspase-3 immunoreactivity 3 days after reperfusion. Simultaneously, they significantly downregulated cytosolic p-JNK/JNK, cathepsin B/actin, cyto c/actin, Smac/DIABLO/actin, cleaved caspase-3/actin, and AIF/actin and mitochondrial p53/HSP60 and Bax/HSP60 fractions but upregulated cytosolic p-p38 MAPK/p38 MAPK, p-p90RSK/actin, p-Bad/Bad, p-CREB/actin, and XIAP/actin and cytosolic and mitochondrial Bcl-2/Bax and Bcl-xL/Bax fractions in the peri-infarct cortex. Pretreatment with SB203580 - a p38 MAPK inhibitor - completely abrogated the effects of AOM-0.8[Formula: see text]g on the aforementioned protein expression, whereas treatment with SP600125 - a JNK inhibitor - exerted protective effects similar to those of AOM-0.8[Formula: see text]g. Treatment with 0.4 or 0.8[Formula: see text]g/kg AOM has neuroprotective effects against mitochondria-related apoptosis by suppressing cyto c, Smac/DIABLO, and AIF release from the mitochondria to cytosol. The anti-mitochondria related apoptotic effects of the AOM extract are attributable to the interactions between upregulated p38 MAPK/p90RSK-mediated p-Bad and CREB signaling and downregulated JNK/cathepsin B-mediated Bax and p53 signaling in the peri-infarct cortex 3 days after transient MCAo.


Assuntos
Alpinia , Isquemia Encefálica , Fármacos Neuroprotetores , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Caspase 3/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Catepsina B/uso terapêutico , Proteína X Associada a bcl-2/metabolismo , Actinas/metabolismo , Proteína Supressora de Tumor p53 , Apoptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Reperfusão , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Infarto
14.
J Immunother Cancer ; 10(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36307151

RESUMO

BACKGROUND: The loss of tumor antigens and depletion of CD8 T cells caused by the PD-1/PD-L1 pathway are important factors for tumor immune escape. In recent years, there has been increasing research on traditional Chinese medicine in tumor treatment. Cycloastragenol (CAG), an effective active molecule in Astragalus membranaceus, has been found to have antiviral, anti-aging, anti-inflammatory, and other functions. However, its antitumor effect and mechanism are not clear. METHODS: The antitumor effect of CAG was investigated in MC38 and CT26 mouse transplanted tumor models. The antitumor effect of CAG was further analyzed via single-cell multiomics sequencing. Target responsive accessibility profiling technology was used to find the target protein of CAG. Subsequently, the antitumor mechanism of CAG was explored using confocal microscopy, coimmunoprecipitation and transfection of mutant plasmids. Finally, the combined antitumor effect of CAG and PD-1 antibodies in mice or organoids were investigated. RESULTS: We found that CAG effectively inhibited tumor growth in vivo. Our single-cell multiomics atlas demonstrated that CAG promoted the presentation of tumor cell-surface antigens and was characterized by the enhanced killing function of CD8+ T cells. Mechanistically, CAG bound to its target protein cathepsin B, which then inhibited the lysosomal degradation of major histocompatibility complex I (MHC-I) and promoted the aggregation of MHC-I to the cell membrane, boosting the presentation of the tumor antigen. Meanwhile, the combination of CAG with PD-1 antibody effectively enhanced the tumor killing ability of CD8+ T cells in xenograft mice and colorectal cancer organoids. CONCLUSION: Our data reported for the first time that cathepsin B downregulation confers antitumor immunity and explicates the antitumor mechanism of natural product CAG.


Assuntos
Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Humanos , Camundongos , Animais , Catepsina B/farmacologia , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Anticorpos , Antígenos de Neoplasias , Proteínas/farmacologia , Complexo Principal de Histocompatibilidade
15.
Vascul Pharmacol ; 145: 107017, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680060

RESUMO

Pulmonary hypertension (PH) is a progressive and life-threatening disease with poor prognosis despite many advances in medical therapy over the past 20 years. Novel therapies which target on the underlying pathology of PH are still urgent to be met. TPN171H is a recently found new compound that exhibits potent pharmacological effects in PH via inhibiting phosphodiesterase type 5 (PDE-5). However, as one icariin derivative, the anti-inflammatory effects of TPN171H for treating PH are not clear. The present study was designed to investigate the therapeutical effect of TPN171H against inflammation in PH and reveal the underlying mechanism. Hypoxia and monocrotaline (MCT)-induced PH rat models were established, which were treated by oral administration of TPN171H (5, 25 mg/kg/d) or sildenafil (25 mg/kg/d). The right ventricle systolic pressure (RVSP), right ventricle hypertrophy index (RVHI) and vascular remodeling were measured. The results suggested that TPN171H significantly reduced RVSP and RVHI, and reversed pulmonary vascular remodeling in rats with both models. Furthermore, in in vivo and in vitro research, our data suggested that TPN171H remarkably suppressed cathepsin B-mediated NLRP3 inflammasome activation, which may contribute to its therapeutical function for PH.


Assuntos
Hipertensão Pulmonar , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Catepsina B/farmacologia , Catepsina B/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/terapia , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/tratamento farmacológico , Inflamassomos , Inflamação/patologia , Monocrotalina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Artéria Pulmonar , Ratos , Ratos Sprague-Dawley , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Remodelação Vascular
16.
J Hazard Mater ; 436: 129093, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35569374

RESUMO

Combined exposure of chronic stress and alumina nanoparticles (AlNPs) aggravates hippocampal injury, but the pathogenesis is unevaluated. This study aimed to investigate the effect and mechanism of co-exposure to chronic stress and AlNPs on hippocampal microglia pyroptosis. In this study, chronic restraint stress (CRS) alone caused NLRP3-mediated hippocampal microglia pyroptosis, but AlNPs did not. Moreover, co-exposure to CRS and AlNPs exacerbated hippocampal microglia pyroptosis, resulting in more severe hippocampal damage and behavioral deficits in rats. Protein-protein interaction network predicted that cathepsin B was a potential regulatory protein of NLRP3. CRS up-regulated cathepsin B expression which had a more pronounced increase in co-exposure group. Whereas, caspase-1 inhibitor VX-765 alleviated hippocampal microglia pyroptosis and behavioral deficits in rats. Consistent with in vivo results, co-exposure of corticosterone and AlNPs aggravated NLRP3-mediated pyroptosis and cathepsin B expression in HAPI cells. Nevertheless, the pyroptosis of HAPI cells was inhibited by cathepsin B inhibitor CA-074Me and NLRP3 knockout, respectively. NLRP3 agonist nigericin failed to promote the pyroptosis of HAPI cells in the presence of cathepsin B inhibition. These results demonstrated that co-exposure to chronic stress and AlNPs could aggravate hippocampal microglia pyroptosis by activating cathepsin B/NLRP3 signaling pathway, resulting in hippocampal damage and behavioral deficits.


Assuntos
Nanopartículas , Piroptose , Óxido de Alumínio/metabolismo , Animais , Catepsina B/metabolismo , Catepsina B/farmacologia , Hipocampo/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/toxicidade , Piroptose/fisiologia , Ratos , Transdução de Sinais
17.
Front Immunol ; 13: 1053754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713420

RESUMO

Background: Acute kidney injury is a common and severe complication of sepsis. Sepsis -induced acute kidney injury(S-AKI) is an independent risk factor for mortality among sepsis patients. However, the mechanisms of S-AKI are complex and poorly understand. Therefore, exploring the underlying mechanisms of S-AKI may lead to the development of therapeutic targets. Method: A model of S-AKI was established in male C57BL/6 mice using cecal ligation and puncture (CLP). The data-independent acquisition (DIA)-mass spectrometry-based proteomics was used to explore the protein expression changes and analyze the key proteomics profile in control and CLP group. The methodology was also used to identify the key proteins and pathways. S-AKI in vitro was established by treating the HK-2 cells with lipopolysaccharide (LPS). Subsequently, the effect and mechanism of Cathepsin B (CTSB) in inducing apoptosis in HK-2 cells were observed and verified. Results: The renal injury scores, serum creatinine, blood urea nitrogen, and kidney injury molecule 1 were higher in septic mice than in non-septic mice. The proteomic analysis identified a total of 449 differentially expressed proteins (DEPs). GO and KEGG analysis showed that DEPs were mostly enriched in lysosomal-related cell structures and pathways. CTSB and MAPK were identified as key proteins in S-AKI. Electron microscopy observed enlarged lysosomes, swelled and ruptured mitochondria, and cytoplasmic vacuolization in CLP group. TUNEL staining and CTSB activity test showed that the apoptosis and CTSB activity were higher in CLP group than in control group. In HK-2 cell injury model, the CTSB activity and mRNA expression were increased in LPS-treated cells. Acridine orange staining showed that LPS caused lysosomal membrane permeabilization (LMP). CA074 as an inhibitor of CTSB could effectively inhibit CTSB activity. CCK8 and Annexin V/PI staining results indicated that CA074 reversed LPS-induced apoptosis of HK-2 cells. The JC-1 and western blot results showed that LPS inhibited mitochondrial membrane potential and activated mitochondrial apoptosis pathway, which could be reversed by CA074. Conclusions: LMP and CTSB contribute to pathogenesis of S-AKI. LPS treatment induced HK-2 cell injury by activating mitochondrial apoptosis pathway. Inhibition of CTSB might be a new therapeutic strategy to alleviate sepsis-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Apoptose , Catepsina B/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteômica , Sepse/metabolismo , Humanos , Linhagem Celular
18.
Biomolecules ; 11(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34680045

RESUMO

Batten disease is a devastating, childhood, rare neurodegenerative disease characterised by the rapid deterioration of cognition and movement, leading to death within ten to thirty years of age. One of the thirteen Batten disease forms, CLN5 Batten disease, is caused by mutations in the CLN5 gene, leading to motor deficits, mental deterioration, cognitive impairment, visual impairment, and epileptic seizures in children. A characteristic pathology in CLN5 Batten disease is the defects in lysosomes, leading to neuronal dysfunction. In this study, we aimed to investigate the lysosomal changes in CLN5-deficient human neurons. We used an induced pluripotent stem cell system, which generates pure human cortical-like glutamatergic neurons. Using CRISPRi, we inhibited the expression of CLN5 in human neurons. The CLN5-deficient human neurons showed reduced acidic organelles and reduced lysosomal enzyme activity measured by microscopy and flow cytometry. Furthermore, the CLN5-deficient human neurons also showed impaired lysosomal movement-a phenotype that has never been reported in CLN5 Batten disease. Lysosomal trafficking is key to maintain local degradation of cellular wastes, especially in long neuronal projections, and our results from the human neuronal model present a key finding to understand the underlying lysosomal pathology in neurodegenerative diseases.


Assuntos
/genética , Doenças Neurodegenerativas/genética , Lipofuscinoses Ceroides Neuronais/genética , Neurônios/metabolismo , Adolescente , Adulto , Sistemas CRISPR-Cas/genética , Catepsina B/farmacologia , Linhagem Celular , Córtex Cerebelar/crescimento & desenvolvimento , Córtex Cerebelar/metabolismo , Criança , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/genética , Mutação/genética , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/fisiopatologia , Lipofuscinoses Ceroides Neuronais/complicações , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fenótipo , Adulto Jovem
19.
Theranostics ; 11(6): 2550-2563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456559

RESUMO

Antibody-drug conjugates (ADCs) are being developed worldwide with the potential to revolutionize current cancer treatment strategies. Developing novel theranostic ADCs with therapeutic utility and imaging capability is an attractive and challenging subject that promises advances in the field of personalized medicine. In this work, we propose a bifunctional molecule-based strategy for the development of theranostic ADCs. Methods: We developed a theranostic ADC consisting of the anti-Her2 antibody Mil40, monomethyl auristatin E (MMAE) as the active payload, and a 7-amino-3-hydroxyethyl-coumarin (7-AHC)-based dipeptide linker, which functions as a novel bifunctional fluorescence probe that allows self-elimination cleavage in the presence of cathepsin B for payload release and fluorophore activation. The on-off fluorescence properties and the antitumor effect in vitro and in vivo were investigated. Results: A 48-fold fluorescence enhancement was observed within 1 h when the 7-AHC-based linker was exposed to cathepsin B. Cleavage upon exposure to cathepsin B allows MMAE and fluorophore intracellular release and the monitoring of MMAE distribution using confocal microscopy. Additionally, the newly developed ADC retains the advantages of traditional p-aminobenzyloxycarbonyl-containing ADCs, such as good stability (t1/2 > 7 days) and high activity in vitro (IC50 = 0.09-3.74 nM). Importantly, the theranostic ADC exhibited the equivalent antitumor efficacy to the marketed ADC T-DM1 in the classic breast cancer model. Conclusion: We suggest that the present strategy can be universally applied in all p-aminobenzyloxycarbonyl-containing ADCs. Overall, theranostic ADCs may play a role in developing new theranostic systems and promoting personalized medicine research.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos/química , Imunoconjugados/química , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Catepsina B/química , Catepsina B/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/farmacologia , Células MCF-7 , Camundongos , Camundongos Nus , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Front Immunol ; 11: 605288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304354

RESUMO

Schistosomiasis threatens 800 million people worldwide. Chronic pathology manifests as hepatosplenomegaly, and intestinal schistosomiasis caused by Schistosoma mansoni can lead to liver fibrosis, cirrhosis, and blood in the stool. To assist the only FDA-approved drug, praziquantel, in parasite elimination, the development of a vaccine would be of high value. S. mansoni Cathepsin B (SmCB) is a well-documented vaccine target for intestinal schistosomiasis. Herein, we test the increased efficacy and immunogenicity of SmCB when combined with sulfated lactosyl archaeol (SLA) archaeosomes or AddaVax™ (a squalene based oil-in-water emulsion). Both vaccine formulations resulted in robust humoral and cell mediated immune responses. Impressively, both formulations were able to reduce parasite burden greater than 40% (WHO standard), with AddaVax™ reaching 86.8%. Additionally, SmCB with both adjuvants were able to reduce granuloma size and the amount of larval parasite hatched from feces, which would reduce transmission. Our data support SmCB as a target for S. mansoni vaccination; especially when used in an adjuvanted formulation.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Arqueais/farmacologia , Catepsina B/farmacologia , Proteínas de Helminto/farmacologia , Lipídeos/farmacologia , Polissorbatos/farmacologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/prevenção & controle , Esqualeno/farmacologia , Vacinas Sintéticas/farmacologia , Animais , Anticorpos/sangue , Catepsina B/imunologia , Células Cultivadas , Citocinas/metabolismo , Composição de Medicamentos , Feminino , Proteínas de Helminto/imunologia , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunização , Imunogenicidade da Vacina , Camundongos Endogâmicos C57BL , Contagem de Ovos de Parasitas , Schistosoma mansoni/enzimologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Caramujos , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...